数学考试大纲概率论
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系 事件的运算及其性质 事件的独立性 完全事件组 概率的定义 概率的基本性质 古典型概率 条件概率 加法公式 乘法公式 全概率公式和贝叶斯(Bayes)公式 独立重复试验
考试要求
1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式,以及全概率公式、贝叶斯公式。
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、随机变量及及其概率分布
考试内容
随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 二维随机变量及其联合(概率)分布 二维离散型随机变量的联合概率分布和边缘分布 二维连续型随机变量的联合概率密度和边缘密度 随机变量的独立性 常见二维随机变量的联合分布随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分布的概念;理解分布函数F (x) = P{X≤x}的概念及性质;会计算用随机变量表示的事件的概率。
2.理解离散型随机变量及其概率分布的概念;掌握0--1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。
3.理解连续型随机变量及其概率密度的概念;掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布、正态分布及其应用
4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。
5.理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。
6.掌握二维均匀分布,了解二维正态分布的密度函数,理解其中参数的概率意义。
7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法。
三、随机变量的数字特征
考试内容
随机变量的数学期望、方差、标准差以及它们的基本性质 随机变量函数的数学期望二随机变量的协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(期望、方差、标准差)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征。
2.会根据随机变量的概率分布求其函数g (X)的数学期望Eg(X)。
3.了解二随机变量的协方差、相关系数及其性质。
四、大数定律与中心极限定理
考试内容
切比谢夫(Chebyshev)不等式 切比谢夫(Chebyshev)大数定律 贝努利(Bernoulli)大数定律 德莫弗一拉普拉斯(De Moivre -- Laplace)中心极限定理
考试要求
1.了解切比谢夫(Chebyshev)不等式、切比谢夫(Chebyshev)大数定律、贝努利(Bernoulli)大数定律。
2.了解德莫弗~拉普拉斯中心极限定理,并会用其结论和应用条件近似计算有关随机事件的概率。